"Living Worlds"
Author's Guide
[last update: 21st Feb '97 at 20:00 PDT (by Mitra)]

This document acts as a guide for authors to making worlds multi-user capable, and to making objects and avatars they build compatable with any Living Worlds world.

1. Background

Living Worlds is a standard for multi-user worlds that allows Objects and Avatars to move from one to another, and to interact with each other. Before reading this document, you probably want to read the Living Worlds Concepts document since this document assumes you understand the kinds of things we are trying to achieve.

Living Worlds is at the cutting-edge of VRML, this unfortunately means that it won't yet be incorporated into authoring tools, so, like several other newer VRML features, authors are going to have to hand-edit the files. Over time, the key tools will start incorporating Living Worlds, and much of this document should become obsolete. As the editors become aware of Living Worlds enabled tools, they will be listed here.

 Since you'll have to be hacking VRML worlds with a text editor, this document also assumes a reasonable understanding of VRML2.0.

2. Getting Started - node introduction.

Living Worlds defines two main nodes,

1. the Zone, representing an area of space, groups things that are shared together.

2. the SharedObject something shared in a Zone

Each of these exists in three variations

1. Zone or SharedObject: The publicly visible portion, similar to the visible part of a PROTO

2. PrivateZone and PrivateSharedObject: a hidden part, so that malignant objects have more difficulty mucking around with other objects. This node is only visible to the networking technology, and to its children.

3. MUtechZone and MUtechSharedObject: Networking technology dependant parts, which know about the particular networking techniques being used in this world. These nodes actually appear with names representing their suppliers, e.g. ParaGraphZone, SonySharedObject or BlackSunSharedObject.

These nodes are related in something like the following diagram.

[image: image1.png]<>

children
SharedObject FrivateSharedObject

mutech

MUTechSharedObject

You'll learn more about the specific nodes below. Living Worlds follows the general VRML2.0 philosophy of putting individual peices of functionality into different smaller nodes to enable more powerfull constructs to be built by composing these smaller nodes. Some of Living Worlds' concepts are part of just one node, but some concepts have functionality in several nodes. Once authoring tools include Living Worlds, this won't matter, but for now it might mean having to edit several nodes to add a single peice of functionality.

3. Authoring Worlds

Selecting technology

The first step in authoring a world is to select which networking technology or MUtech (pronounced mew-tek) to use. In most situations you will be able to choose any of the competing suppliers, but certain functionality may only be available from one supplier. The technology selected will determine what your MUtechZone looks like, some tentative examples follow.

As other Living Worlds compliant MUtechs become available links will be provided here.

ParaGraph

The ExternProto required is:

EXTERNPROTO ParaGraphZone [field SFString nameServer "" field ZoneName ""]

 ["urn:inet:paragraph.com:proto/ParaGraphZone",

 "http://www.paragraph.com/proto/ParaGraphZone.wrl"]

Each MUtechZone looks like:

ParaGraphZone {

 nameServer "ns.paragraph.com:4200"

 zoneName "castle/kitchen"

 privateZone USE name of PrivateZone goes here

}

where the nameServer is the address of the server providing Name Service, this might be the ISP for example. The zoneName is an identifier that is unique for the name server, to this Zone.

BlackSun

Sony

Partitioning the World

The next step is to decide how to partition the world into Zones, essentially you are deciding what parts of the world will be shared together. This is critically important for bandwidth control. So for example, in an interior world you might decide that each room is its own Zone, because there is not much point in wasting bandwidth on receiving updates for whats going on in the kitchen, while your camera is in the garage.

Editing the File

At this point, you'll need to edit the file, the procedure may vary from MUtech to MUtech, but in general it will be close to this.

1. at the top of the file, copy the EXTERNPROTO definitions from http://www.livingworlds/draft_1/lw_externproto.wrl
If this file doesn't exist yet, then copy the EXTERNPROTO definitions out of http://web.archive.org/web/19971009150638/http://www.livingworlds/draft_1/lw_code.htm

2. For each Zone you have identified.

3. find the Group, (or Transform, LOD or Switch) node corresponding to the top of this part of the scene.

4. Add the three parts of the Zone to it.

5. DEF Z Zone {

6. }

7. DEF PZ PrivateZone {

 MUtech insert the MUtechZone defined above
 zone USE Z

 whichTechnology "BlackSun"

}

8. The trick here is to make sure that all the nodes have the right pointers, the PrivateZone needs a pointer to the Zone, and the MUtechZone typically needs a pointer to the PrivateZone.

9. Zones are shared whenever their isActive flag is true or when this client has inserted an object with receveUpdates=TRUE. Control of the isActive flag can either be very simple, or very complex depending on how critical optimization is to the world.

· The simplest control is when isActive is just set to TRUE (the default). In this case the Zone should contain a complete copy of all the SharedObjects in it. This is fine for simple worlds, but gets expensive (on bandwidth) for complex worlds which means that in many networking situations the world will not contain a true copy.

Zone { }

· To tune this better, the isActive field can be ROUTEd from a ProximitySensor. This ProximitySensor can be statically set to cover the area from which it is important to have an up-to-date version of the Zone, Whenever the camera enters this area the Zone will start to get updated.

· this is normally the size of the Group mentioned above.

· If the Group's bboxCenter is unspecified, then just leave the center of the ProximitySensor as the default.

· If the Group's bboxSize is unspecified then you have to figure it out by hand, because although the Browser will calculate it for you, there is no way to get this information out of the Group.

· DEF PZ1 PrivateZone { ... }

· DEF PS1 ProximitySensor {

· size 200 200 300

· }

ROUTE PS1.isActive TO PZ1.isActive

· If the Zone has a dynamically changing set of members, then it might be take advantage of its bounding box, which will change size as SharedObjects are added and removed, then the Zone will be updated whenever any of its CURRENT children are visible.

· DEF PZ2 PrivateZone { ... }

· DEF VS2 VisibilitySensor { }

· ROUTE PZ2.bboxSize TO VS2.size

· ROUTE Z2.bboxCenter TO VS2.center

ROUTE VS2.isActive TO Z2.isActive

· Finally the various components mentioned above, can be used in combination with custom scripts to fine-tune when the Zone gets shared.

10. In order for avatar position to drive the camera around, a ProximitySensor needs to tell the Zone where the camera is. If you have not used a ProximitySensor to control the isActive flag of the Zone, then you probably need to add one here. Then just add two ROUTEs.

11. ROUTE PS1.position_changed TO PZ2.avatarPosition

ROUTE PS1.orientation_changed TO PZ2.avatarOrientation

The simplest case

In the simplest case, there is only one Zone in your world, then its easy, the only hack is that the ProximitySensor needs to cover the entire world, which is done by setting a size to the maximum size of numbers.

At the top level add the following.

EXTERNPROTO definitions copied from http://web.archive.org/web/19971009150638/http://www.livingworlds/draft_1/lw_externproto.wrl
EXTERNPROTO for your selected MUtechZone
DEF Z Zone { }

DEF PZ PrivateZone {

 MUtech SonyZone { }

 whichTechnology "Sony"

}

DEF PS ProximitySensor {

 size 1e20 1e20 1e20

}

ROUTE PS.isActive TO PZ.isActive

ROUTE PS.position_changed TO PZ.avatarPosition

ROUTE PS.orientation_changed TO PZ.avatarOrientation

More complex cases

Several more complex cases are possible, some of them are listed before, but for others you'll have to read the full spec.

A table in an LOD inside a room

Maybe you have a Table, whose contents you want to keep simple until the Avatar approaches it. So, its geometry might be encased in an LOD.

· In this case, you probably want the Avatar to always be a member of the room's Zone, not of the Table's.

· Add a Zone, PrivateZone, MUtechZone and ProximitySensor to the room as usual.

· Add a Zone, PrivateZone and MUtechZone to the table as usual, except that you may have to insert a Group inside the LOD node first .

· Add a ProximitySensor, but only route it's isActive output to the PrivateZone.
For Example:

· LOD {

· Shape { ... simple geometry and materials }

· Shape { ... complex geometry and materials }

}

becomes

LOD {

 Shape { ... simple geometry and materials }

 Group {

 Shape { ... complex geometry and materials }

 DEF Z2 Zone { }

 DEF PZ2 PrivateZone {

 DEF MZ2 MUTech ParaGraphZone { ... }

 ...

 }

 DEF PS2 ProximitySensor {

 size 100 100 20

 ROUTE PS2.isActive TO PZ2.isActive

 }

 }

}

Nested Zones - to be written

Overlapping Zones - to be written

4. Authoring Objects

Authoring Objects and Avatars for Living Worlds has a fundamental difference from authoring Worlds, that is that you, the author, in most cases don't know what Multi-user technology will be being used. This is because your object could, in theory, be added to any multi-user world, this is one of the main design goals of Living Worlds.

So, for an object, you edit just two of the three nodes, the "SharedObject" node itself, and the "PrivateSharedObject" node. The third, the "MUtechSharedObject", or in reality, the "BlackSunSharedObject" or "SonySharedObject" will be added automatically when the object is inserted into a Zone.

Preparing your File

The first steps are to prepare your file to be an object. Each of these steps is a generally usefull step, not dependant on Living Worlds.

1. Seperate your object into its own file, for example editing it out of some world it is in.

2. Remove any of the Bindable nodes (Fog, Viewpoint, Background, NavigationInfo) they could confuse the world it is added to.

3. If you haven't already done so, build low res versions, and link them into LOD nodes, otherwise your avatar or object could take a long time to show up on some worlds.

Lets assume, this leaves a file with a top-level Group node.

Adding SharedObject and PrivateSharedObject

Next, add the main Living Worlds nodes, this would look something like:

EXTERNPROTO definitions copied from http://web.archive.org/web/19971009150638/http://www.livingworlds/draft_1/lw_externproto.wrl
DEF SO1 SharedObject {

 private PrivateSharedObject {

 sharedObject USE SO1

 visualDefinition Group { ... the geometry from the previous step ... }

 url "http://.... the url of this file"

 }

}

It is really important to get the links above right, so that the various nodes making up your object can find each other.

Flags

The PrivateSharedObject contains a number of flags that are used to distinguish between different kinds of objects: Avatars, Objects and Bots; Pilots and Drones etc.

· The isAvatar flag is set at run-time if the object is an avatar - i.e. under the control of a human.

· If this object should be deleted from the scene after the client who creates it leaves, then set persistent to FALSE, otherwise leave it as TRUE.

· If the object will have behaviors that should run locally to mimimize latency, but still be shared, for example a light-switch, then set isPilot to TRUE. If its a Bot whose controlling behaviors should have one master copy, and be shared from there, then set isPilot to FALSE, and persistentPilot to TRUE. Note that no mechanism is specified for how the Pilot is moved around, for example valid implementations might include a server setting the flag on a randomly chosen client, or loading the behavior into a special server-side machine, or - in a server-less system - by a client sending out a broadcast message, and becoming the Pilot if noone else responds, in particular, as an author, this means that you cannot rely on performance characteristics of moving the pilot around.

· If the object has behaviors which depend on the state of other objects in the space, then it set receiveUpdates=TRUE, then it will receive updates even if the Zone would not otherwise be active.

· Control of "who sees what" is crucial to efficient use of the network bandwidth available. In theory all state changes are conveyed to all instances of an object, but in practice that is not possible. Living Worlds provides two flags to control this at the Object level, and other functionality at the Zone level. If an object's updateNeighborsOnly flag is TRUE, (the default), then state changes made to the object will only be sent to the neighbors of the object, how these are chosen is MUtech dependent. If updateNeighborsOnly is FALSE then state changes will be sent as far as possible to every client receiving updates from the Zone. Care should be taken with this flag, since setting updateNeighborsOnly=FALSE on an Object that changes rapidly could use an unacceptably large amount of bandwidth.

To illustrate this, imagine a scene with a number of actors on stage playing to an audience, the actors have to be visible to everyone. The actors are lit by lights which must also be seen by everyone. The audience should only be visible to their neighbors. In the audience is a bot which approaches audience members and tries to sell them coke cans.

	
	UpdateNeighborsOnly
	receiveUpdates
	isAvatar
	Persistent
	PersistentPilot

	Human Actors on a stage:

everyone should see them.
	FALSE
	TRUE
	TRUE
	FALSE
	FALSE

	Audience:

should see the actors, but only see (and be seen by) their neighbors in the audience.
	TRUE
	TRUE
	TRUE
	FALSE
	FALSE

	Coke Can in Audience:

Should similarly only be seen by its neighbors, but does not need to know about its neighbors.
	TRUE
	FALSE
	FALSE
	EITHER
	FALSE

	Ice Cream Seller Bot:

Should be controlled from exactly one client which should know where its neighbors are.
	TRUE
	TRUE
	FALSE
	TRUE
	TRUE

	Light:
Should be seen by everyone in the scene.
	FALSE
	FALSE
	FALSE
	TRUE
	FALSE

Sharing State

Now the flags are set to say who will receive updates, and when, it is neccessary to pick what state gets shared. It is critical to efficient networking - and therefore worlds that respond fast - that you share just the amount of state that is neccessary.

For example, if you have a ceiling fan in your world, you might be tempted to share the SFRotation that distinguishes where the blades appear, however this would generate a large amount of traffic, and because of network latency the other copies would not see the same position anyway. Instead, a bandwidth-conserving approach would be to share either the on-off state of the fan, or the start-time of the TimeSensor driving the OrientationInterpolator which turns the fan.

To share the state follow these steps.

1. If it doesn't exist already, add an AssociativeStringArray to the PrivateSharedObject's currentState field.

2. Locate the route that sets the state you want to share

3. Break this route

4. Pick a name for the state you want to share - e.g. "fanOn", the name should be short, and only needs to be unique to this SharedObject, and must need

5. Add a converter node, for example if it is an SFBool eventIn that you are intercepting, then add an SFBoolToASA node, set its tag field to the name chosen above.

6. route via this converter from the original source of the intercepted route to the ASA

7. Add another converter node, for example an ASAToSFBool node, and set its tag field as above.

8. route via this converter from the ASA to the original destination of the intercepted route.

For example, the single user code looking like

DEF Touch1 TouchSensor { ... }

DEF Time1 TimeSensor { ... }

ROUTE Touch1.isActive TO Time1.enabled

Becomes...

PrivateSharedObject {

 ...

 currentState DEF AS1 AssociativeStringArray { }

 visualDefintion {

 ... the rest of the object's geometry ...

 DEF Touch1 TouchSensor { }

 DEF Time1 TimeSensor { }

 DEF TA1 SFBoolToASA { tag "fanOn" }

 ROUTE Touch1.isActive TO TA1.input

 ROUTE TA1.output TO AS1.set

 DEF AT1 ASAToSFBool { tag "fanOn" }

 ROUTE AS1.output TO AT1.input

 ROUTE AT1.output TO Time1.startTime

 ... the rest of the object's geometry ...

 }

}

Setting fields of the PrivateSharedObject

· Pick a name for your object, and set the nickname field.

· Set the bboxSize and bboxCenter to the size of the object, typically this can be obtained by looking at the top-level group of the visual definition.

· If your object is to be added to the world in the world's VRML file, then:

· Set its toPosition and toOrientation to wherever the object should go relative to the Zone's coordinate system.

· set the scale field if the object and the world do not have compatable scales. Remember VRML defaults to 1unit=1meter.

· If the object is to be dynamically added to a world at run-time, then:

· its toPosition and toOrientation do not need to be set, they will be set when the object is added.

· set the scaleable field if you are willing for the world to change the object's size to fit. Note that if this flag is set to FALSE, then some worlds might reject the addition of this object.

Adding Certificates

If your avatar carries certificates that proves its identity, then the certificates field will need editing. For example if there was a certificate issued by foobar.com consisting of some string of text "dfdasds" then it would be added as:

SharedObject {

 ...

 certificates AssociativeStringArray {

 tags "foobar.com"

 values "dfdasds"

 }

}

Currently there are no applications supporting this, so don't worry about this for now.

Adding Behaviors

Writing local behaviors for SharedObjects is the same as in any other VRML2.0 application, the only difference is that some of the eventOuts usually need to be routed through converters to the currentState so that the state changes can be shared. The next level of complexity is to link them to Behaviors so that they can run in response to messages sent from other objects.

1. If the object doesn't have already have a MessageHandler then add one to the publicMessages field, this will receive the message as sent from another object.

2. Pick a name for the message, or find the name as defined in a profile.

3. Put this name in messageNames,

4. Edit the script so that it takes an s

5. If the Script should be run conditionally, then

· put a Behavior in messageScripts

· build a Check, this is an area for further development, but it should look something like below to check whether according to the MUtech running this world the user is a "whizzard".

6. If you added a Behavior above, then put the Script in its script field otherwise put it in the messageScripts field of the MessageHandler

PrivateSharedObject {

 publicMessages MessageHandler {

 messageNames ["greet/tickle"]

 messageScripts [

 Behavior {

 conditions [CheckServer { role "whizzard" }]

 script Script { }

 }

]

 }

}

5. Authoring Avatars

Building an Avatar is essentially the same as building an object, however a high quality avatar is going to implement a number of behavior handlers for behaviors expected to be encountered in worlds it will frequent.

Selectors

An avatar may also want to implement two Selectors, Selectors provide menus (or the equivalent in other User Interface metaphors). There are two that are relevant to an avatar.

Attached to the pilotSelector field, is a menu that the user of the avatar can invoke, this allows the user to change their own behavior, for example to Dance or Wave. To implement this,

1. Decide how you want to invoke the menu, since your avatar typically not be visible from your camera position, you may want to put a Touch Sensor on a HUD, i.e. something that will float in front of you and give you a menu on demand.

2. Put a Selector in the pilotSelector field.

3. For each behavior you want to be able to choose, add a SelectorItem in the Selector. Fill in at least its messageName, messageScript and label fields.

4. Note that the Script should be ready to accept a single SFNode eventIn called message which will pass a Message node with its what field set to whatever you specifiy in messageName.

See below for a complex example illustrating this.

Attached to the selector field of the PrivateSharedObject is a similar structure that can be invoked by other users viewing this avatar, when they click on the avatar the Selector will be shown, for example this menu might show a set of behaviors that can be done to your avatar (Hug, Tickle etc). This is implemented in the same way as for the pilotSelector.

Movement

Movement of your avatar can either be simple or complex, in hte typical case, the Pilot will be moved by a ProximitySensor attached to the Zone. The Drones may however want to perform simple interpolation, or more complex animation to move from point to point.

For the simplest case, just hook up a SmoothMover into the PrivateSharedObject as follows.

DEF PSO PrivateSharedObject {

 DEF SM SmoothMover {}

 ROUTE PSO.toPosition TO SM.toPosition

 ROUTE PSO.toOrientation TO SM.toOrientation

 ROUTE PSO.toTime TO SM.toTime

 ROUTE SM.position TO PSO.position

 ROUTE SM.orientation TO PSO.orientation

}

For more complex cases, these events can be hooked via any animation Script that you want, for example to make your avatar dance to the new position.

6. Examples

Simple Object

This object is a simple red cube that changes to a green sphere when touched, and shares that state.

EXTERNPROTO ... (copied from http://web.archive.org/web/19971009150638/http://www.livingworlds.com/draft_1/lw_externproto.wrl)

DEF SO SharedObject {

 private PrivateSharedObject {

 currentState DEF ASA AssociativeStringArray { }

 url "http: "

 bboxSize 1 1 1

 sharedObject USE SO

 visualDefinition {

 DEF BS BooleanSwitch {

 trueChildren [

 Shape {

 geometry Cube { }

 appearance Appearance {

 material Material { diffuseColor 1 0 0 } # Red

 }

 }

]

 falseChildren [

 Shape {

 geometry Sphere { }

 appearance Appearance {

 material Material { diffuseColor 0 1 0 } # Green

 }

 }

]

 }

 DEF TS1 TouchSensor { }

 DEF B2A SFBoolToASA { tag "touched" }

 ROUTE TS1.isActive TO B2A.input

 ROUTE B2A.output TO ASA.set

 DEF A2B ASAToSFBool { tag "touched" }

 ROUTE ASA.output TO A2B.input

 ROUTE A2B.output TO BS.in

 }

 }

}

Avatar

This is an example Avatar description file that moves the avatar using the SmoothMover and provides two behaviors dance and wave that can be selected. It also shows how the pilot menu is enabled by a control hanging in front of the avatar in the Pilot case.

EXTERNPROTO ... (copied from http://web.archive.org/web/19971009150638/http://www.livingworlds.com/draft_1/lw_externproto.wrl)

DEF DD SharedObject {

 private DEF D PrivateSharedObject {

 pilotSelector DEF PSEL Selector {

 selectorItems [

 SelectorItem {

 label "Dance"

 isCheckBox TRUE

 messageName "dance"

 messageScript

 DEF S1 Script {

 eventIn SFNode message

 eventOut SFNode setState

 url "javascript:

 function message(value, timestamp) {

 setState[0] = value->what;

 setState[1] = value->floatParams[0]; # 0 or 1 if unchecked or checked

 }"

 }

 },

 SelectorItem {

 label "Wave"

 isCheckBox TRUE

 messageName "wave"

 messageScript

 USE S1

 }

]

 }

 currentState DEF ASA1 AssociativeStringArray {

 tags ["dance", "wave"]

 values ["false", "false"]

 }

 ROUTE S1.setState TO ASA1.set

 visualDefinition [

 DEF BS BooleanSwitch {

 ROUTE PSO.isPilot TO BS.in # Only show Geometry when Drone, show sphere when Pilot

 falseChildren { # Shown only on Drone

 Group { # the actual shape of the avatar goes here }

 DEF A2B1 ASAToSFBool { tag "dance" }

 ROUTE ASA1.output TO A2B1.input

 DEF S Script {

 url "http://foo.com/macarena"

 eventIn SFBool isActive

 }

 ROUTE A2B1.output TO S.isActive

 # This section gives smooth interpolation between points

 DEF SM SmoothMover {}

 ROUTE D.toPosition TO SM.toPosition

 ROUTE D.toOrientation TO SM.toOrientation

 ROUTE D.toTime TO SM.toTime

 ROUTE SM.position TO D.position

 ROUTE SM.orientation TO D.orientation

 }

 trueChildren { # Shown only on Pilot

 Transform { translation 0 0 -1 } # 1 metre in front of nose

 children [

 Shape { geometry Sphere { } } # White Sphere

 DEF TS TouchSensor { }

 ROUTE TS.isActive TO PSEL.enabled

]

 }

 }

 }

]

 }

}
Some things to Note:

· The Pilot doesn't set its behavior, it sets the "dance" or "wave" value of its state, the Drone then receives this message and starts or stops this behavior.

· The drone uses a default "SmoothMover" node to simply interpolate between locations.

Sending messages

This is an example on how to send a message over the network to another client. It shows how a "Get Business Card" message is routed from a drone to the pilot of this drone which sends the card as a reply.

EXTERNPROTO ... (copied from http://web.archive.org/web/19971009150638/http://www.livingworlds.com/draft_1/lw_externproto.wrl)

DEF DD SharedObject {

 private DEF D PrivateSharedObject {

 selector Selector {

 selectorItems [

 SelectorItem {

 label "Get Business Card"

 messageName "getCard"

 messageScript DEF S1 Script {

 eventIn SFNode message

 eventOut SFNode sendToPilot

 field SFNode SO USE D

 url "javascript:

 function initialize() { # Is this correct syntax

 addRoute (S1,sendToPilot,SO->mutech,sendToPilot);

 } # Note route added dynamically, because Mutech not present when

 #SharedObject compiled

 function message(value, timestamp) { sendToPilot = value; }"

 }

 }

]

 }

 privateMessages MessageHandler {

 messageNames "getCard,myCard"

 messageScripts [

 DEF S2 Script {

 eventIn SFNode message

 eventOut SFNode replyToDrone

 url "vrmlscript:

 function initialize() # Is this correct syntax

 { addRoute (S1,replyToDrone,SO->mutech,replyToDrone);

 } # Note route added dynamically, because Mutech not present when

 #SharedObject compiled

 # TBD - need to compile Message to send, don't know vrmlscript for this?

 function message(value, timestamp)

 { replyToDrone->toAddress = value.fromAddress;

 replyToDrone->what = "myCard" # now add all information of the card

 # fill other parameters?

 }"

 }

 DEF S Script {

 eventIn MFString message

 url "vrmlscript: function message (value, timestamp) { # display card to user }"

 }

]

 }

 }

}

World

This is an example World

EXTERNPROTO ... (copied from http://web.archive.org/web/19971009150638/http://www.livingworlds.com/draft_1/lw_externproto.wrl)

DEF Z Zone {

}

DEF PZ PrivateZone {

 MUtech BlackSunZone {

 multiuserServer "server.blacksun.de:5001"

 privateZone USE PZ

 }

 zone USE Z

 whichTechnology "BlackSun"

}

 DEF PS ProximitySensor {

 size 100 100 20

 ROUTE PS.isActive TO PZ.isActive

 ROUTE PS.position_changed TO PZ.avatarPosition

 ROUTE PS.orientation_changed TO PZ.avatarOrientation

}

Things to Note

· In this example, the author licensed MultiUser technology from Black Sun.

· The EXTERNPROTO for the BlackSunMultiUser will come from Black Sun, and not from a standardized extension.

· Note the name convention of company and then MUtech node being defined.

· The ProximitySensor used by the MultiUser node does no interpolation, a clever version (not possible in VRML2.0) might look ahead and send a prediction for the Drone to interpolate to.

- End -

